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Abstract: Occupational structural transformation is a common pattern during the 
steady growth of GDP per capita in major economies worldwide. In recent years, there has 
been a decline in the employment share of goods occupation and an increase in service 
occupation within the Chinese manufacturing industry, presenting a trend of occupational 
structural transformation and rapid development of service-oriented manufacturing. It 
is an important driving force and typical performance of the high-end, intelligent, and 
green development of the manufacturing industry. As a strategic general technology which 
leads the new round of technological revolution and industrial transformation, artificial 
intelligence (AI) has become a new fundamental force to accelerate the occupational 
structural transformation and service-oriented manufacturing development in China. 
Thus, this paper establishes a dynamic general equilibrium model with AI technology and 
occupational heterogeneity, showing the endogenous mechanism of occupational structural 
transformation. We find that when AI technology is biased towards goods occupation, and 
the elasticity of substitution between goods occupation and service occupation is less than 
1, then AI will drive the transformation of occupational structure from goods to service 
within the manufacturing sector, increase the proportion of service-oriented manufacturing, 
improve labor productivity of manufacturing relative to service and stabilize the real output 
share of manufacturing. Promoting deeper integration of different occupations, intensifying 
R&D in AI technology and reducing labor mobility barriers between occupations can 
effectively accelerate the occupational structural transformation and industrial structural 
upgrading. We use theoretical analysis and numerical simulation method to show the 
theoretical mechanism by which AI affects occupational structural transformation and 
industrial structural transformation from a macroeconomic perspective, and put forward 
policy implications on how to promote the service-oriented manufacturing development and 
accelerate the construction of modern industrial system through AI innovation.
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1 McKinsey. Jobs Lost, Jobs Gained: Workforce Transitions in a Time of Automation, 2017.

1. Introduction
The Report to the 20th National Congress of the Communist Party of China (CPC) outlines a vision 

that “In pursuing economic growth, we must continue to focus on the real economy. We will advance new 
industrialization and move faster to boost China’s strength in manufacturing, product quality, aerospace, 
transportation, cyberspace, and digital development”. China’s manufacturing sector, as the bedrock of the real 
economy and the stabilizing “ballast stone” of a major nation’s economic system, drives the new development 
stage through its transformation and upgrading from sheer scale to global strength. This shift underpins 
the construction of a modern industrial system and the pursuit of high-quality development. The Outline 
of the 14th Five-Year Plan for National Economic and Social Development and Long-Range Objectives 
Through 2035 explicitly mandates that “We will further implement intelligent manufacturing and green 
manufacturing projects, develop new service-oriented manufacturing models, and promote high-end, 
intelligent, and green manufacturing”. Amid the rapid emergence of next-generation artificial intelligence 
(AI) technologies, this paper examines how China can harness the dynamics of technological revolution 
and industrial transformation to promote service-oriented manufacturing, thereby facilitating industrial 
structure upgrading and the development of a modern industrial ecosystem.

China’s manufacturing sector boasts the world’s most comprehensive industrial categories and 
complete industrial system. Yet, despite its vast scale, it remains “large but not strong”, long anchored 
in the low-to-mid tiers of the global value chain, with an urgent need to ascend toward the high-
value ends of the “smile curve”. Service-oriented manufacturing, an innovative paradigm blending 
production and service functions, emerges as a critical pathway for the sector’s transformation and 
upgrading. Within a typical manufacturing enterprise, operational activities extend beyond conventional 
production tasks—such as processing and assembly—to encompass service-oriented functions, 
including research and development, design, logistics, distribution, installation, and after-sales support. 
Thus, manufacturing inherently incorporates service dimensions. Viewed through the lens of employee 
occupational structure, which reflects a firm’s diverse production and operational activities, these shifts 
mirror changes in production models and business formats. Cross-country data reveal that, alongside 
economic growth, numerous economies—including China—have experienced notable transformations, 
marked by a declining share of production roles and a rising proportion of service roles, especially 
within manufacturing. This transition from production- to service-dominated patterns constitutes both a 
hallmark and a key driver of service-oriented manufacturing. What underlying forces propel this change? 
How does it influence industrial structure upgrading and the broader enhancement of manufacturing? 
These questions delineate the scope and focus of our investigation.

Over the past decade, artificial intelligence (AI) technology has advanced rapidly, fundamentally 
reshaping traditional production paradigms. Its widespread adoption across manufacturing and service 
sectors positions it as a strategic catalyst for a new wave of technological revolution and industrial 
transformation, poised to propel China’s occupational structure transformation and the rise of service-
oriented manufacturing. Notably, the integration of industrial robots into China’s industrial production 
surged between 2011 and 2017, achieving an average annual growth rate of 30%. Scholarly perspectives 
on AI’s impact on employment remain divided. Some contend that AI-driven automation substitutes 
labor, precipitating unemployment (Frey & Osborne, 2017; Wang & Dong, 2020). Others argue that 
AI’s influence is structural, exhibiting significant heterogeneity and asymmetric effects across workforce 
segments, rather than uniform job loss (Acemoglu & Autor, 2011; Sun & Hou, 2019; Yu et al., 2021; 
Wang et al., 2023; Chen et al., 2023; He & Liu, 2023; Yin et al., 2023). As a productivity-enhancing 
tool, AI often reconfigures rather than eliminates labor, prompting job transitions rather than outright 
displacement (McKinsey, 20171).
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Data from Chinese listed companies over the past decade reveal a marked shift in occupational 
structure. At the macro-industry level, the employment share of production roles has declined across both 
general enterprises and manufacturing firms, while service roles have proportionally increased. At the 
micro-enterprise level, empirical analysis of both the full enterprise sample and the manufacturing sub-
sample demonstrates that AI technology significantly reduces the share of production occupation2. Yet, 
among surviving manufacturing firms3, total employment has not diminished; instead, it has grown at an 
average annual rate of 4%. Within these firms, the proportion of production workers has decreased, while 
service job roles have expanded. This suggests that AI does not wholly supplant labor but preferentially 
enhances production processes, boosting labor productivity in production roles and facilitating a labor 
shift toward service functions. This dynamic underpins both occupational structure transformation and 
the advancement of service-oriented manufacturing.

Building on these insights, this paper develops a multi-sector dynamic general equilibrium model 
that incorporates AI and job heterogeneity to explore how AI drives changes in occupational structure 
and industrial upgrading. Within this model, production and service labor inputs are combined through 
a constant elasticity of substitution (CES) function to form sectoral labor contributions. AI technology 
grows endogenously via R&D investment, impacting labor-augmenting technologies differently across 
job types. Unlike prior models, this study emphasizes AI’s externality and bias effects: its externalities 
boost labor productivity across all occupation and industries, while its bias disproportionately enhances 
the productivity of production roles relative to others.

The analysis shows that, under certain conditions, AI advancements trigger a shift in occupational 
structure—reducing the share of production occupation while increasing the share of service roles—
while also promoting service-oriented manufacturing. At the same time, AI raises the manufacturing 
sector’s relative labor productivity, stabilizes its real output share, and accelerates its transformation and 
upgrading. Through theoretical modeling and numerical simulations, this paper clarifies the economic 
mechanisms by which AI reshapes job dynamics and advances manufacturing. Based on these findings, it 
provides targeted policy recommendations to support China’s growth in service-oriented manufacturing 
and hasten its rise as a manufacturing powerhouse.

This paper advances research in artificial intelligence, a field where extensive literature examines 
AI’s heterogeneous effects on employment at the micro-individual level, alongside its macroeconomic 
impacts, including industrial structure upgrading, income distribution, skill premiums, and productivity 
(Acemoglu & Restrepo, 2018; Aghion et al., 2019; Guo, 2019; Chen et al., 2019; Guo & Wang, 2022; 
Guo et al., 2023). Li (2021) demonstrated that next-generation digital technologies, such as AI and 
the industrial internet, markedly enhance manufacturing capabilities in processing and production, 
dismantling barriers to service-oriented manufacturing development. Yet, existing studies have largely 
overlooked the economic mechanisms driving AI’s influence on this domain. This paper constructs a 
macro-level theoretical model incorporating AI and job heterogeneity, analyzing the impact of AI on 
occupational structure transformation and industrial upgrading, thus enriching the socio-economic 
perspective within AI studies.

This paper expands on prior research related to industrial structure transformations. Traditional 
theories link these shifts to supply-side factors, such as technological progress and capital deepening, 
as well as demand-side preferences (Kongsamut et al., 2001; Ngai & Pissarides, 2007; Acemoglu 
& Guerrieri, 2008). Other studies emphasize the roles of international trade, government policies, 
and investment (Uy et al., 2013; Guo et al., 2021; Herrendorf et al., 2018; Sposi, 2019; Dekle & 

2 Detailed empirical evidence can be found in the attachments on the China Industrial Economics website (http://ciejournal.ajcass.org).
3 The number of surviving manufacturing enterprises among Chinese listed companies is 1,082, and the total number of employees increased from 

5,217,581 in 2012 to 7,755,941.
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Vandenbrouke, 2012). However, these analyses focus on the industry level, neglecting job heterogeneity 
within sectors. Recently, researchers have shifted attention to occupational structure changes, 
pinpointing job-specific technological advances as a key driver (Duernecker & Herrendorf, 2022; Aum 
et al., 2018; Bárány & Siegel, 2020). Yet, these studies neither address AI technology nor provide 
detailed quantitative analysis using Chinese data. This study explores AI’s impact on the transformation 
of occupational structure and manufacturing upgrading from an AI-focused perspective. It also conducts 
a quantitative analysis incorporating China’s economic characteristics, thereby providing a theoretical 
foundation for advancing service-oriented manufacturing development in China. 

2. Characteristic Facts
The shift in occupational structure refers to the movement of labor from production to service roles 

within enterprises, reflected in a declining employment share of production occupation and a growing 
share of service occupation. This pattern manifests not only in the economy-wide reconfiguration 
of production and service employment but also in sectoral shifts within enterprises across diverse 
industries.

Data on occupational structure are sourced from the Integrated Public Use Microdata Series (IPUMS) 
International, which offers detailed sector and occupation information for individual employment. 
IPUMS standardizes and harmonizes original data for consistency across years and countries. Following 
Duernecker & Herrendorf (2022), this paper classifies individual employment into production and 
service sectors, as well as production and service occupation4. A scatter plot (see Figure 1) displays the 
employment shares of these job types against logarithmic per capita GDP across 30 global economies, 
including China. The aggregated data reveal a clear pattern: as per capita GDP increases, the share 
of production occupation drops significantly, while the share of service occupation rises steadily, 
highlighting the dynamics of occupational structure shifts.

4 Detailed data processing procedures and the list of countries can be found in the attachments on the China Industrial Economics website (http://
ciejournal.ajcass.org).

Figure 1: Global Occupational Structure and GDP Per Capita 
Sources: Occupational structure data are sourced from the IPUMS, while GDP per capita data are derived from the 
Maddison Project Database (2020). Figure 2 and 3 are the same.
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Figure 2 illustrates the link between occupational structure and logarithmic per capita GDP within 
the production and service sectors, respectively. On average, economic growth spurs a labor shift from 
production to service roles in both sectors, with the production sector showing a more pronounced 
change. Across economies at different development stages, the composition of occupation in the 
production sector varies widely: in less developed countries, the workforce is mostly engaged in 
production roles, while in advanced economies, only about 50% of the sector’s labor remains in such 
positions.

Figure 2:  Global Occupational Structure and GDP Per Capita within Production and Service Sectors
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Figure 3 shows the evolution of occupational structure over time in selected nations. Initial 
employment shares of production occupation vary widely, reflecting different stages of economic 
development, yet a clear pattern of such shifts emerges. The proportion of production occupation has 
dropped by 20%-40% across these countries, with developed nations like the United States, France, and 
Canada now having roughly 20% of their workforce in production roles.
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China exhibits a parallel trend of occupational structure transformation. Given the scarcity 
of continuous and detailed national census data on employment positions, and the availability of 
occupational structure disclosures from Chinese A-share listed companies since 2011, this study utilizes 
a sample of A-share listed company data from 2011 to 2022, subjected to selective processing5. Figure 4 
depicts the evolving employment shares of various job types in China over this period. Within a decade, 
the proportion of production occupation among these firms steadily declined from 52.5% to 45.4%, 
while the share of service occupation rose from 47.5% to 54.6%, surpassing production occupation 
by 2012. Notably, since 2016, this transformation has markedly slowed or plateaued, a phenomenon 
warranting further exploration later in this paper.

Figure 3: Evolutionary Trend of Occupational Structure in Selected Countries

5 Detailed processing procedures can be found in the attachments on the China Industrial Economics website (http://ciejournal.ajcass.org). 
production occupation in the service industry mainly refer to enterprises or subsidiaries that have a portion of production operations.

Figure 4: Evolution of Occupational Structure in Chinese A-Share Listed Companies 
Source: Occupational structure data derived from Chinese A-share listed company records. Figures 5 and 6 are the same.
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Figure 5 shows the changing occupational structure within China’s manufacturing and service 
sectors. The manufacturing sector reveals a clearer shift: the employment share of production occupation 
fell from 66.6% to 60.2%, while the share of service occupation increased from 33.4% to 39.8%, 
marking an early move toward “service-oriented manufacturing”. In contrast, the service sector’s 
production job share has also declined, but its overall job composition shows greater volatility and a less 
consistent trend than manufacturing.

The findings of this study further underscore that substantial shifts in occupational structure are 
most evident within large manufacturing firms characterized by extensive and advanced AI integration. 
Figure 6 displays occupational structure trends over the past decade for two example firms, Sany Heavy 
Industry and Weichai Power. Both companies have actively pursued digital transformation during the 
latest technological wave, using deep AI integration to enable intelligent production processes. At Sany 
Heavy Industry, the employment share of production occupation dropped from 59.1% to 39.3% between 
2011 and 2022, while the share of service occupation grew from 40.9% to 60.7%. Similarly, at Weichai 
Power, production job employment fell from 74.5% to 55.1%, with service job employment rising from 
25.5% to 44.9%.

Figure 5: Evolution of Occupational Structure within China’s Manufacturing and Service Sectors
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In conclusion, cross-country survey data reveal significant disparities in occupational structures 
across nations at varying stages of economic development. As per capita GDP rises, economies around 
the world exhibit a consistent pattern of occupational transformation, marked by shifts from production 
to service roles in both manufacturing and service sectors. Over the past decade, China has likewise 
witnessed a shift of labor from production-oriented positions to service-oriented positions, which has 
been even more significant within manufacturing enterprises. The extent of this transformation is greater 
in economies and enterprises that combine strong economic performance with deeper integration of AI 
technologies, suggesting a link between technological advancement and evolving job composition.

3. Model Framework
This section extends the model framework of Duernecker & Herrendorf (2022) by incorporating 

artificial intelligence (AI) technology, developing a multi-sector dynamic general equilibrium model 
that captures both AI integration and changes in occupational structure. On the supply side, the model 
considers heterogeneous labor inputs, with AI influencing the structure of labor across occupation and 
industries through its effect on job-augmenting technological progress. On the demand side, the model 
distinguishes between the industrial origins of consumption, investment, and R&D expenditures.

Let the subscript  denote discrete time periods. The production sector is bifurcated into 
manufacturing and services, each produced by a representative firm that rents capital and employs labor 
within a perfectly competitive market. Hereafter,  designates the manufacturing and service 
sectors, respectively, while  corresponds to production and service occupation, respectively.

Both industrial sectors adopt the Cobb-Douglas production function form:

                                                              (1)
In equation (1),  represents the capital income share of industry J 6. LJt is the composite labor 

from production occupation and service occupation, using the constant elasticity of substitution function 
form:

Figure 6: Evolution of Occupational Structure in Leading Listed Manufacturing Firms
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6 To emphasize the impact of occupational structure transformation on labor while mitigating the heterogeneous effects of capital deepening across 
sectors, the baseline model assumes uniform capital income shares for the manufacturing and service industries. Empirical data confirm that the capital 
income shares of China’s manufacturing and service sectors are nearly identical.
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                 (2)
In equation (2), NJjt represents the labor of job j hired by industry J, the parameter  is a 

constant, measuring the weight of production occupation in the composite labor of industry J, σJ >0 
represents the elasticity of substitution between production occupation and service occupation. Ajt is the 
labor-augmenting technology of job j, and it is further assumed that:

                                                (3)
In equation (3), the parameter Bj >0 measures traditional technological progress related to the job, 

Mt represent general-purpose AI technology,  >  0 is a constant, measuring the degree of influence of 
AI technology on the two types of occupation. If , then the impact of AI technology on different 
occupation is biased. Note that the subscripts of parameters Bj and  are both j, indicating that the job-
augmenting technology  Ajt here is job-related, not industry-related.

Let PJt, rt and wJjt represent the output price, capital rent, and labor wage, respectively. The first-
order optimality condition for the firm’s profit maximization problem is:

                                                               (4)

                                     (5)

                                           (6)
The investment goods sector uses the outputs of the manufacturing and service industries as 

intermediate goods to produce investment goods in a perfectly competitive market, with its production 
technology adopting the constant elasticity of substitution function form:

                                 (7)

In equation (7), It represents investment goods, IJt represents the output from industry J used in 
the production of investment goods,  is a constant parameter, and  is also a constant 
parameter, which represents the elasticity of substitution of the outputs of the two industries in the 
production of investment goods. Solving the investment goods production firm’s profit maximization 
problem yields:

                                                      (8)

The price of investment goods It satisf﻿ies: .

The household sector is described by a representative household with a lifetime utility function of 
the form:

where  is a constant parameter representing the discount factor, Ct is the instantaneous 
utility, which is composed of consumption in the two industry products, satisfying:

                                    (9)

In Equation (9), CJt represents the output of the two industries used for consumption, ωC  
is a constant parameter, and εC  is also a constant parameter, which represents the elasticity of 
substitution of the outputs of the two industries in consumption.

The demand sector is described by a representative household. The household holds capital Kt and 
one unit of labor Nt in each period, earning capital rent rtKt and labor income wt. The household uses 
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part of its income for AI technology research and development Tt, and the rest for consumption and 
investment. Investment increases the amount of capital held by the household. Thus, the household 
budget constraint satisfies:

                                           (10)

                                                      (11)
In Equation (11), δk  represents the capital depreciation rate. Solving the household utility 

maximization problem yields the consumption structure satisfying:

                                                   (12)

The price of composite consumption goods Ct satisfies: , and the 
Euler equation:

                                                (13)

AI technology R&D investment Tt is used for expenditure on the outputs of the two industries HJt, 
namely:

                                                      (14)
Expenditure on the outputs of the two industries can form new AI technology Ht, which satisfies in 

form:

                            (15)

In Equation (15), ωH  is a constant parameter, and εH  is also a constant parameter, which 
represents the elasticity of substitution of the outputs of the two industries in AI technology R&D. 
Solving its cost minimization problem yields:

                                                 (16)

The price of new AI technology Ht satisfies: .

New AI technology improves the level of AI technology in the next period, that is:

                                                        (17)

In equation (17), the parameter δM  represents the rate of AI technology iteration. The level of 
AI technology Mt will in turn have a biased impact on the labor force of different occupation, as shown 
in Equation (3).

The market clearing conditions for product and factor markets satisfy:

                                                             (18)

                                                               (19)

                                           (20)

                                              (21)
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4. Theoretical Analysis
This section rigorously examines the impact of AI technology on occupational and industrial 

structures. Initially, the employment shares of the manufacturing and service sectors are defined as 
follows:

                                                  (22)

The employment shares of total production occupation and total service occupation are defined as 
follows:

                                                     (23)

The employment shares of production and service occupation within the manufacturing and service 
sectors are defined as follows:

                                       (24)

Assuming frictionless labor mobility across occupation and sectors, combining the aforementioned 
equations (5) and (6) yields:

                                            (25)

Given a fixed level of AI technology Mt, Equation (25) establishes the occupational structure for 
industry J under static equilibrium. Conducting a comparative static analysis on Mt, we obtain:

                                        (26)

The influence of AI on occupational structure hinges on the elasticity of substitution between job 
types and the bias inherent in AI technology. Despite ongoing debate surrounding AI’s overall impact on 
employment, scholarly consensus converges on the biased nature of AI-driven technological progress, 
which predominantly enhances the efficiency of procedural, repetitive tasks (Ge et al. 2021; Duernecker 
& Herrendorf, 2022; Wang et al., 2022; Chen et al., 2023). Consequently, in the early stages of AI adoption, its 
impact on production occupation surpasses that on service occupation, expressed as . Moreover, if the 
complementary synergy between job types outweighs their substitution effect—that is, if the elasticity 
of substitution between occupation is σJ < 1—then AI advancements will reduce the share of production 
occupation while increasing the share of service occupation within industries. The converse holds when 
substitution dominates.

Proposition 1: When AI technology exhibits a bias toward production occupation and the elasticity 
of substitution between production and service occupation is low, AI advancements trigger occupational 
structure transformation in both manufacturing and service sectors. Specifically, the employment share 
of production occupation declines while that of service occupation rises. At the aggregate economy 
level, the overall share of production occupation similarly decreases, with a corresponding increase in 
the share of service occupation7.

The economic mechanism underlying Proposition 1 aligns with insights from Ngai & Pissarides 
(2007). When the elasticity of substitution between production and service occupation within an industry 
is less than 1, labor shifts toward job types where growth is slower. Given AI’s bias toward production 

7 All conclusion derivations in this paper can be found in the attachments on the China Industrial Economics website (http://ciejournal.ajcass.org).
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occupation, it accelerates labor-augmenting technological progress in these roles, boosting their output. 
This, in turn, drives labor reallocation from production to service occupation within industries. As this 
transformation occurs concurrently across manufacturing and service sectors, the aggregate economy 
reflects a diminished share of total production occupation and an increased share of service occupation. 
According to Equation (26), a smaller elasticity of substitution σJ and a greater AI technology bias 

 amplify AI’s impact on occupational structure, intensifying labor reallocation across job types.
The economic mechanism of Conclusion 1 is similar to Ngai and Pissarides (2007). If the elasticity 

of substitution between production occupation and service occupation within the industry is less than 
1, then labor will shift to slower-growing occupation. Since AI technology is more biased toward 
production occupation, it leads to faster growth of labor-augmenting technology in production occupation 
and higher output in production occupation, which leads to the transfer of labor from production 
occupation to service occupation within the industry. Since occupational structure transformation 
occurs simultaneously in the manufacturing and service industries, in aggregate, the proportion of total 
production occupation will decrease, and the proportion of service occupation will increase. According 
to Equation (26), the smaller the elasticity of substitution σJ between production occupation and service 
occupation, and the greater the bias difference of AI technology , the greater the impact of AI on 
the occupational structure, and the greater the transfer of labor between different occupation.

In order to intuitively show the impact of AI technology on the labor structure at the industry level, 
the demand side and the supply side are further simplified8. To this end, Assumption 1 is made: ωC =ωI 

=ωH =ω, εC =εI =εH =ε, that is, on the demand side, the weights of the manufacturing industry are equal, 
and the elasticity of substitution is also equal. Therefore, from equations (8), (12) and (16), no matter 
how much proportion of output is used for consumption, investment, and AI R&D, it will not affect the 
relative proportion of the manufacturing and service industries. At this time, there is:

                                                     (27)

Assumption 2 is further made σG =σS =σ, that is, on the supply side, disparities in the elasticity 
of substitution between occupation across industries are disregarded. Following derivation and 
simplification, this yields:

                         (28)

Taking the natural logarithm and total differential of both sides of equation (28) yields: 

. Existing literature consistently finds that the elasticity of substitution 

between industries in consumption and investment is near zero (Herrendorf et al., 2018; Guo et al., 
2021), indicating that the manufacturing and service sectors are largely complementary, i.e., ε <1. If 
the share of production occupation in the composite labor of the manufacturing sector exceeds that in 
the service sector, i.e., αG >αS , then AI technology advancements will reduce the employment share 
of the manufacturing sector while increasing that of the service sector, resulting in industrial structure 
transformation. The reverse holds true otherwise.

Proposition 2: When AI technology exhibits a bias toward production occupation, the elasticity 

8 The qualitative conclusions of the model remain robust regardless of parameter simplification, as can be demonstrated analytically. To clearly 
illustrate the theoretical mechanisms and derive explicit qualitative insights, this study employs a series of parameter simplifications. Notably, the 
subsequent numerical simulations diverge from these simplified parameter assumptions.
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of substitution between the manufacturing and service sectors is low, and the share of production 
occupation in manufacturing surpasses that in services, AI advancements drive industrial structure 
transformation—specifically, a decline in the employment share of the manufacturing sector and a rise in 
that of the service sector.

Proposition 2 highlights that, at the industry level, a higher weight of production occupation in 
manufacturing amplifies the sector’s overall productivity gains due to AI’s bias toward production roles. 
Given the complementarity between manufacturing and services, alongside occupational structure 
transformation, the manufacturing sector’s aggregate employment share diminishes. Thus, within a 
model incorporating occupational structure shifts, the industrial-level structural transformation persists, 
with labor reallocating from manufacturing to services.

Further calculations of the relative labor productivity and real output of the manufacturing and 
service sectors yield:

                              (29)

Applying natural logarithms and total differentiation to both sides of the preceding equation yields: 

. If AI technology exhibits a bias toward production occupation and 

production occupation carry a greater weight in the manufacturing sector compared to the service 
sector, then the relative labor productivity of manufacturing over services rises with AI technology 
accumulation. Conversely, the opposite holds true. Concerning the real output ratio between the 
manufacturing and service sectors:

                                              (30)

According to Proposition 2, if the elasticity of substitution between the manufacturing and service 
sectors is low and the share of production occupation in manufacturing exceeds that in services, then 
AI’s job bias will increase the real output share of the manufacturing sector. The converse also applies.

Proposition 3: When AI technology disproportionately biases toward production occupation and the 
share of production occupation in manufacturing surpasses that in services, AI advancements enhance 
the relative labor productivity of manufacturing compared to services. Moreover, if the elasticity 
of substitution between these sectors is small, the real output share of manufacturing rises, thereby 
facilitating its transformation and upgrading.

This effect stems from AI’s enhancement of production job efficiency, coupled with the higher 
weight of such occupation in manufacturing, which accelerates the sector’s overall labor productivity 
growth. Despite a declining employment share in manufacturing due to industrial structure 
transformation, the low elasticity of substitution amplifies productivity gains in manufacturing relative to 
services. Consequently, the real output share of manufacturing increases with AI technology accumulation. 
Proposition 3 underscores that AI’s job bias not only boosts manufacturing labor productivity but also 
sustains the sector’s real output share, driving its transformation and upgrading in the AI era.

5. Numerical Simulation
5.1 Parameter Calibration

This section employs numerical simulation to quantitatively assess AI technology’s impact on 
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occupational structure and industrial structure transformations over a 30-year horizon, with each model 
period representing one year (2011 as the initial period). Given that Chinese listed companies began 
disclosing occupational structure data in 2011, parameters are calibrated to align the model’s first-
period results with the 2011 occupational structure characteristics of these firms. On the supply side, 
the capital income share θ for both manufacturing and service sectors is set at 0.5, total labor supply is 
normalized to 1, and initial capital and AI levels are set to 1. Capital depreciation is fixed at 0.1, while AI 
depreciation is 0, reflecting standard values in the literature. Without loss of generality, in the baseline 
model, parameters are set to g =1 and s =0.75 to capture AI’s initial bias toward production occupation, 
with subsequent sensitivity analysis increasing the value of s to explore AI’s growing influence on 
service occupation. The weights of production occupation in the composite labor of manufacturing and 
service sectors αG , αS  are calibrated using Equation (25), yielding αG=0.666 and αS=0.207 based on 2011 
employment shares from Chinese listed companies. The elasticity of substitution between occupation   
σ is calibrated via regression. According to the derivation in the theoretical part, if the elasticity of 
substitution σ between occupation in different industries is equal, then:

                                                (31)

Taking the natural logarithm of Equation (31), we performed an OLS regression. The dependent 
variable was the service job share within the manufacturing sector, while the independent variable 
was labor productivity, represented by actual operating income per employee from 2011-2022 listed 
company data. This regression yielded a coefficient of 0.58. Hence, σ =0.71<1. This elasticity, below 
1, aligns with the assumptions of Propositions 1-3. Finally, parameters Bg and Bs are calibrated to 
ensure the model’s 12th period (2022) closely matches the 2022 occupational structure data of Chinese 
listed companies.

On the demand side, studies by Herrendorf et al. (2018) and Guo et al. (2020) indicate that the 
elasticity of substitution for value-added across industries in consumption and investment is near 
zero, reflecting the complementarity of manufacturing and services. Thus, the baseline model sets the 
elasticity of substitution for these sectors in consumption, investment, and AI R&D to εC =εI =εH =0.01. 
The weights of industries in consumption and AI R&D are set to ωC =ωH =0.5, while the manufacturing 
sector’s weight in investment is higher, with ωI calibrated as ωI =0.9 to align employment shares with 
Chinese data. To isolate AI’s effects on occupational and industrial structures, the model controls for 
capital deepening by fixing the investment rate exogenously, avoiding endogenization via the Euler 
equation. The aggregate investment rate  is set at 0.4, with AI 
R&D investment  at 0.01.

5.2 Baseline Results
Figure 7 presents the numerical simulation results of the baseline model. As AI technology 

progresses, the simulation reveals distinct trends: from an industrial structure perspective, the 
employment share of the manufacturing sector experiences a modest decline. From an occupational 
structure viewpoint, the aggregate share of production occupation decreases substantially, with a 
sustained reduction in production occupation within manufacturing. Meanwhile, the labor productivity 
ratio of manufacturing to services rises steadily, and manufacturing’s real output share increases 
incrementally. These patterns corroborate Propositions 1-3, demonstrating that AI induces structural 
shifts at both industry and job levels—driving labor reallocation from production to service occupation 
and from manufacturing to service sectors. This occupational structure transformation accelerates 
labor productivity gains in manufacturing, sustains its real output share, and facilitates the sector’s 
transformation and upgrading in the AI era.
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Table 1 compares the model’s simulated values for key variables in 2011 (first period) and 2022 (12th 
period) against actual data9. Overall, the model closely aligns with real data, particularly in replicating 
occupational structure shifts within manufacturing and service sectors. At the aggregate level, while 
simulated industrial and occupational structures show minor deviations from actual data, the downward 
trends and magnitudes remain consistent.

Figure 7: Simulation Results of the Baseline Model

9 The actual data primarily consist of aggregated statistics from manufacturing and service enterprises listed on China’s A-share market. The 
employment share of production occupation in the manufacturing sector is defined as the ratio of production job employees to the total workforce in 
all manufacturing enterprises, while the employment share of the manufacturing sector is calculated as the number of employees in manufacturing 
enterprises divided by the combined total of employees in both manufacturing and service enterprises.
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Table 1: Comparison of Simulated and Actual Data for Key Variables (2011 vs. 2022)

Main variables
Model Actual data

2011 2022 2011 2022

Employment share of production occupation within the 
manufacturing sector xG

0.666 0.607 0.666 0.602

Employment share of production occupation within the service 
sector xS

0.207 0.168 0.207 0.176

Employment share of the manufacturing sector X 0.656 0.619 0.638 0.591

Employment share of production occupation x 0.508 0.439 0.525 0.454
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Table 2 details the evolution of key variables from the first to the 30th period. In the baseline model, 
a 9.095 increase in the logarithm of AI technology leads to several key outcomes: a 0.158 fall (23.7% 
reduction) in the manufacturing sector’s production job share, and a 0.093 drop (14.2% reduction) in its 
overall employment share. Concurrently, the total production job share across the economy experiences a 
0.170 decrease (33.5% reduction). Conversely, the model shows a 0.628 increase (62.8% growth) in the 
manufacturing-to-service labor productivity ratio, and a 0.021 growth (3.2% increase) in manufacturing’s 
real output share. Notably, AI-driven occupational structure transformation outpaces industrial structure 
shifts, with production job shares in manufacturing steadily declining. Manufacturing labor productivity 
surges by 62.8% relative to services, while its real output share remains largely stable, underscoring 
significant transformation and upgrading.

10 When σ’s values for the two sectors differ, the analysis in the theoretical section no longer holds. For numerical simulation results, please refer to 
the appendix on the China Industrial Economics website (http://ciejournal.ajcass.org).

Table 2: Changes in Key Variables Across Periods (1st to 30th)
Change in the 

logarithm of AI 
technology level

Employment share 
of production 

occupation within 
the manufacturing 

sector

Employment 
share of the 

manufacturing 
sector

Overall 
employment share 

of production 
occupation

Ratio of labor 
productivity 

between 
manufacturing and 

service sector

Actual output 
share of the 

manufacturing 
sector

Baseline model 9.095 -0.158 -0.093 -0.170 0.628 0.021

Sensitivity analysis I: Changes in the elasticity of substitution between occupation

σG (σS)=0.6 9.031 -0.219 -0.089 -0.213 0.594 0.020

σG (σS)=0.55 9.003 -0.246 -0.087 -0.232 0.578 0.020

Sensitivity analysis II: Changes in the degree of AI bias

s =0.9 10.726 -0.072 -0.045 -0.083 0.271 0.010

s =1 12.088 0 0 0 0 0

Sensitivity analysis III: Changes in the investment rate

sH =0.02 11.541 -0.203 -0.116 -0.211 0.826 0.027

sH =0.05 14.866 -0.262 -0.146 -0.260 1.105 0.033

Note: Variable changes reflect shifts from the first to the 30th period.

5.3 Sensitivity Analysis
This subsection conducts sensitivity analysis on key parameters, beginning with the elasticity of 

substitution σ between different occupation10. Duernecker & Herrendorf (2022) calibrate this elasticity 
in the U.S. economy at 0.56. Here, σ is adjusted from 0.71 to 0.60 and 0.55 to simulate increasing job 
specialization and stronger complementarity. Figure 8 and Table 2 present the simulation results. Overall, 
varying σ does not alter the directional trends of key variables, preserving the qualitative conclusions. 
According to Equation (25), a lower σ amplifies AI’s impact on occupational structure, intensifying the 
transformation. Figure 8 confirms that as σ decreases, production job shares decline significantly, both 
in total and within manufacturing. Specifically, as σ drops to 0.60 and 0.55, the aggregate production job 
share falls by 0.213 and 0.232, respectively, while production job shares in manufacturing decrease by 
0.219 and 0.246. This indicates that greater complementarity between roles within an industry amplifies 
the magnitude of changes in occupational structure. However, the elasticity of substitution between roles 
has minimal impact on industrial structure, as variations in σ exert little influence on manufacturing 
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employment share, relative labor productivity in manufacturing, or the proportion of manufacturing’s 
real output.

Figure 8:  Simulation Results for Varying Values of the Elasticity of Substitution Parameter between Occupation
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σG (σS)=0.71 σG (σS)=0.6 σG (σS)=0.55(Baseline model）

Next, we adjust the job-bias parameter s of artificial intelligence (AI). In the baseline model, this 
parameter s is set at 0.75. Here, we incrementally increase s to 0.9 and 1.0 to simulate a scenario where 
AI technology increasingly biases toward service occupation. As outlined in the theoretical section, a 
reduced bias differential ( g− s) between AI’s impact on the two job types diminishes the magnitude 
of changes in occupational and industrial structures. Figure 9 and Table 2 detail the corresponding 
simulation results. When s is assigned the value of 0.9, the proportion of production job employment 
within manufacturing falls by 0.072, the manufacturing employment share decreases by 0.045, and the 
overall production job employment share drops by 0.083. These changes in occupational and industrial 
structures are markedly smaller than those in the baseline model. When s is assigned the value of 1.0, 

g= s, that is, despite continued improvements in AI technology, its unbiased effect across job types 
prevents any alteration to the job or industrial structure.

In recent years, with the application of technologies such as big data, cloud computing, and large 
language models (LLMs), the application areas of artificial intelligence have increasingly penetrated service 
occupation—including white-collar workers, researchers, and roles in the emerging platform economy—
reducing the technology bias gap with production occupation. As shown in Figure 9, this narrowing of the job 
bias gap in artificial intelligence enhances the relative labor productivity of the service industry. Consequently, 
as artificial intelligence technology advances, the labor productivity gap between manufacturing and the 
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Figure 9: Simulation Results Under Different Values of the AI Job Bias Parameter

service industry continues to shrink, partially mitigating Baumol’s cost disease.
Finally, we adjust the investment rate SH in AI technology R&D. Increasing this rate directly 

accelerates the accumulation of AI technology, amplifying changes in occupational and industrial 
structures. As depicted in Figure 10 and Table 2, when the AI technology R&D investment rate SH 
rises from 0.01 to 0.02 and 0.05, the magnitude of changes in key variables intensifies. Specifically, 
the employment share of production occupation within manufacturing declines by 0.203 and 0.262, 
while manufacturing’s overall employment share drops by 0.211 and 0.260. The share of production 
occupation across all sectors decreases by 0.116 and 0.146. In contrast, the labor productivity ratio 
between manufacturing and services increases by 0.826 and 1.105. These results suggest that increasing 
investment in AI R&D can lead to significant shifts in occupational and industrial structure, while 
substantially enhancing the relative labor productivity of the manufacturing sector.

 6. Further Discussions
In the baseline model, labor can flow freely between different occupation and sectors. In this section, 

we introduce wage friction factors for occupation or sectors to characterize labor mobility cost, in order 
to examine the quantitative impact of labor market frictions.

6.1 Labor Mobility Cost Exists between Different Occupation
Due to varying skill requirements, labor transfer between different occupation incurs training costs, 
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thus creating a labor mobility cost. In recent years, the National Bureau of Statistics (NBS) has published 
the average wages of employees in five types of positions in large enterprises across the country. 
Among them, the wages of production, manufacturing, and related personnel are 77% of the overall 
average wage level. Here, we assume that the wage of service occupation is λ times that of production 
occupation11, i.e., wst =λwgt , λ≥1. Here, λ measures the labor mobility cost between different occupation. 
Then, equation (25), which determines the occupational structure, becomes:

                                          (32)

Define , then Equation (28), which determines the labor force structure 
of the sector, becomes-

                       (33)

Figure 10: Simulation Results Under Different Values of the AI R&D Investment Rate Parameter

11 Data from Chinese listed companies does not include wage details for specific job roles. In contrast, IPUMS data from the US reveals that average 
wages for production occupation are lower than those for service occupation across both the production and service sectors.

sH =0.01 sH =0.02 sH =0.05(Baseline model）
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From Equation (32), it is evident that higher labor mobility cost (λ) between occupation increases 
the difficulty of shifting labor from production to service roles, thereby slowing changes in employment 
patterns. Equation (33) further reveals that λ influences the labor composition across industrial sectors. 
Naturally, the level of artificial intelligence technology (Mt ), a key driver of occupational structure shifts, 
must also be considered holistically. The following analysis uses numerical simulations to quantitatively 
assess the effects of labor mobility cost (λ) on employment structure, industrial structure, and relative 
labor productivity.

Figure 11 presents simulation results for λ values of 1, 1.3, and 1.5, representing scenarios of 
increasing labor mobility costs between occupation. These results show that, for any given λ value, the 
job bias of AI technology continues to drive occupational structure transformation and broader industrial 
shifts, with Propositions 1-3 remaining valid. However, holding other factors constant, higher λ values 
correlate with elevated employment shares of production occupation—both overall and within the 
manufacturing sector—and a slightly higher manufacturing sector employment share. This indicates a 
slower pace of occupational structure transformation and industrial restructuring, with λ exerting a more 
significant impact on the occupational composition within manufacturing.

Thus, while restricted labor mobility between occupation does not alter the overall direction of 
occupational and industrial structure transformation, a higher labor mobility cost significantly slows 
these processes. Conversely, government initiatives that facilitate labor transitions from production to 
service roles, such as enhanced skills training, can accelerate workforce shifts and drive manufacturing 
transformation and upgrading by increasing job mobility. Quantitatively, reducing λ by one-third could 
lower the employment share of production occupation within manufacturing by 0.06-0.07 per timeframe and 
the overall production job employment share by 0.05-0.07. This magnitude aligns with labor market changes 
observed in China over the past decade. Therefore, lowering mobility barriers and enhancing workforce 
flexibility can effectively advance employment structure evolution and manufacturing upgrades.

Figure 11: Simulation Results for Varying Labor Mobility Cost Between Occupation
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6.2 Labor Mobility Cost between Sectors
When labor cannot flow freely between sectors, a labor mobility cost arises across sectoral 

boundaries. Data from Chinese listed companies indicate that, over the past decade, average salaries 
in the service sector have ranged from 1.2 to 1.8 times those in the manufacturing sector. Let the 
service sector wage be η times the manufacturing sector wage, defined as wSt =ηwGt , where η≥1. Here, 
η quantifies the labor mobility cost between sectors. While η does not alter the occupational structure 
within a sector—leaving equation (25) in the baseline model unchanged—it modifies equation (28), 
which governs the sectoral labor structure, as follows:

                          (34)

Based on the above equation, labor mobility cost η between sectors affects the distribution of labor 
across industries. Figure 12 presents simulation results where the inter-sector mobility cost η is increased 
to 1.5 and 2, respectively. While these changes in η do not alter the overall trajectory of employment 
and industrial transformation, higher values of η make it more difficult for workers in manufacturing to 
shift to the service sector. This leads to a greater employment share in manufacturing and a slower pace 
of industrial restructuring. However, the employment composition across occupations remains nearly 
identical across different η values. Thus, while higher inter-sector mobility costs significantly hinder 
industrial transformation, their impact on occupational distribution appears minimal.

Figure 12: Simulation Results for Varying Labor Mobility Cost Values between Sectors
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In summary, while labor market barriers do not alter the overall direction or trend of employment 
shifts and industrial transformation, they do influence the pace of these changes, and the propositions 
of the baseline model remain valid. However, the effects of different types of barriers vary. Job-level 
mobility constraints hinder both occupational reallocation and broader industrial upgrading. The higher 
the labor mobility cost between roles, the greater the share of production occupation—both overall and 
within sectors—and the slower the pace of workforce restructuring. Quantitatively, sector-level mobility 
barriers have a noticeable effect on industrial structure transformation, but only a limited influence on 
occupational dynamics. 

7. Conclusions and Implications
With the rise of artificial intelligence (AI), China’s manufacturing sector has experienced a 

significant shift in its employment composition, with labor increasingly moving from production to 
service-oriented roles. Drawing on characteristic facts, this paper develops a general equilibrium model 
that incorporates AI and job heterogeneity to analyze how these forces shape labor market evolution and 
support manufacturing transformation and upgrading. The key findings are outlined below.

First, when artificial intelligence technology biases toward production occupation and the elasticity 
of substitution between production and service occupation is low, advancements in AI drive labor shifts 
from production to service roles, fostering occupational structure changes both within sectors and across 
the broader economy. Additionally, if the elasticity of substitution between manufacturing and service 
industries is low, and production occupation hold a greater weight in manufacturing than in services, 
AI’s job bias reduces the manufacturing employment share while increasing that of the service industry, 
thereby catalyzing industrial structure transformation.

Second, if artificial intelligence technology demonstrates a stronger bias toward production 
occupation—and such occupation comprise a larger share of manufacturing than of the service 
industry—then advancements in AI will enhance labor productivity in manufacturing relative to services. 
Although the share of employment in manufacturing may decline, substantial productivity gains driven 
by occupational structure shifts help maintain the sector’s real output share, thereby supporting its 
transformation and upgrading.

Third, robustness analysis shows that encouraging deeper integration of diverse job types within 
industries and increasing AI R&D investment can further promote shifts in occupational structure and 
accelerate industrial transformation, all while preserving the stability of manufacturing’s real output share. 
Conversely, as AI increasingly affects service-sector occupation, the gap in job bias narrows, slowing changes 
in occupational structure and the pace of transformation. This, in turn, raises labor productivity in services 
relative to manufacturing, partially alleviating the effects of Baumol’s cost disease.

Fourth, labor market barriers do not change the overall direction or trend of occupational structure shifts 
and industrial transformation. However, reducing barriers to mobility between occupations can speed up the 
development of service-oriented manufacturing and accelerate the upgrading of the manufacturing sector, 
whereas barriers between sectors have a limited impact on these structural changes.

China’s service-oriented manufacturing sector is growing rapidly, with significant potential for 
further evolution in occupational structure. This serves as a vital pathway to expand the profit margins 
of the manufacturing sector and forge new competitive advantages. It will reinforce China’s position 
in global industrial chains, facilitate smooth economic circulation, and help build a modern industrial 
system. This paper provides a theoretical foundation for promoting occupational structure change and 
industrial transformation in the AI era and offers following policy recommendations to support the 
ongoing upgrading of manufacturing.

(1) Policymakers should provide greater support for generic AI technology R&D and strengthen 
digital infrastructure development. General-purpose AI technologies, such as large language models 
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(LLMs), represent a key frontier in AI innovation, offering versatile applications across diverse sectors. 
The AI technology examined in this paper is versatile and can be adopted by various industries, which 
is a typical characteristic of general AI. To this end, we propose two key recommendations. First, China 
should leverage its national institutional strengths to sustain and expand R&D investment in generic 
LLM AI models, fostering a comprehensive and self-reliant technological ecosystem. Second, it is also 
important to strategically and incrementally advance digital infrastructure by proactively deploying 
critical assets like 5G networks, data centers, and cloud computing hubs, laying a strong foundation for 
future deep integration and application.

(2) Market-oriented labor market reforms should be deepened to effectively address structural 
employment challenges. This study reveals that mobility barriers between occupation and sectors hinder 
occupational structure shifts and industrial transformation. To overcome these obstacles, we propose 
two key strategies. First, the government must advance labor market reforms by accelerating changes 
to the household registration system, dismantling labor market segmentation and regional barriers, 
breaking industry monopolies, and fostering an integrated labor market. Second, efforts should be 
made to enhance vocational skills training by supporting on-the-job and transitional training programs, 
improving workers’ adaptability to new roles, and cultivating versatile “all-rounders” who can succeed 
across diverse occupation, thereby alleviating structural employment tensions.

(3) Enterprises should accelerate their adoption of “cloud, data, and intelligence” initiatives to drive 
job integration through digital transformation. This study finds that stronger integration of production 
and service occupation significantly advances occupational structure evolution and the development of 
service-oriented manufacturing. However, unclear job delineations hinder effective complementarity, 
reducing human capital efficiency. To address this, we propose two key suggestions. First, the 
government must promote accessible “cloud adoption, data utilization, and intelligence” services by 
incentivizing platforms—through targeted funding and financial support—to equip small and medium-
sized enterprises with technologies like cloud computing, big data, and AI. This will enable digital upgrades 
in critical areas such as R&D, operations, production, logistics, and after-sales. Second, enterprises 
should reform human resource management by leveraging digital tools and systems to define clear role 
boundaries, ensure precise labor-position alignment, and foster deep integration across job types.

(4) Policy support should be strengthened for service-oriented manufacturing enterprises to foster 
deep integration between the digital and real economies. This study highlights artificial intelligence 
as a powerful catalyst for advancing service-oriented manufacturing. Harnessing AI and related 
technologies offers a powerful avenue for the seamless integration of the digital and real economies. 
To achieve this, we propose two key measures. First, the government should encourage leading 
manufacturing firms within industrial clusters to transition toward service-oriented manufacturing by 
strengthening collaboration with upstream and downstream partners in the industrial chain and supply 
chain stakeholders. This would support the establishment of customized, service-oriented manufacturing 
networks, aligned with the needs of individual industries and their industrial chains. Second, targeted 
funding should be introduced through industrial guidance policies to provide financial support for 
enterprises shifting toward service-oriented manufacturing, complemented by temporary tax exemptions 
or incentives to accelerate their transformation and growth.    
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